
1. Introduction
Lorenz (1969) first suggested that atmospheric flows might have a finite range of predictability. The chaotic diver-
gence of model trajectories due to small errors in initial conditions is now widely accepted, following numerous 
studies involving atmospheric models of differing complexity (e.g., Daley, 1981; Sun & Zhang, 2016 and many 
others). In the case of midlatitude weather systems, several studies (e.g., Froude et al., 2013; Smagorinsky, 1969) 
estimate this finite range to be about two weeks. Thus, weather forecasts are only useful up to this intrinsic range 
(e.g., Palmer et al., 2014). Gaining an understanding of the factors that set this time scale may enable an informed 
expectation of its value in altered climates and lead to improvements in numerical weather prediction.

Error growth and thus predictability in different latitude ranges may be reasonably considered a consequence of 
the underlying dynamics, with the flow (and thus error propagation) in the middle latitudes predominantly asso-
ciated with baroclinic disturbances (e.g., Judt, 2020). Additionally, the properties of error growth may be different 
in models at varying levels of complexity.

In this work, we consider midlatitude error growth in two models: an idealized dry dynamical core and a com-
prehensive atmospheric GCM. The model setups we consider are described in Section 2. Section 3 relates error 
propagation with midlatitude eddies simulated by these models, using the Eady growth rate as an indicator of the 
time scales of growth of baroclinic eddies. Section 4 focuses on predictability in altered climates in the compre-
hensive model, including the effects of altered moisture content on static stability.
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storms. Understanding factors that set the limit up to which weather predictions are useful may help us improve 
our ability to provide accurate forecasts and prepare for changes in the period of useful weather prediction in 
different climates. We show in this work that the time scale over which eddies grow can change the time that 
models take to lose memory of initial conditions, thus changing the period over which weather predictions may 
be useful. Many realizations of a comprehensive atmospheric model run in a range of cold to warm conditions 
also reveal that midlatitude weather may be less predictable in warmer climates than colder climates.
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2. Model Setup
2.1. Dry Dynamical Core Integrations

The dry dynamical core model is based on that of Polvani and Kushner (2002), and is identical to that of She-
shadri and Plumb (2016). The model is dry and hydrostatic, solving the global primitive equations with T42 
resolution in the horizontal and 40 sigma levels in the vertical. Radiation and convection schemes are replaced 
by relaxation to a zonally symmetric equilibrium temperature profile identical to Held and Suarez (1994) in the 
troposphere. In the stratosphere (above 200 hPa), the equilibrium temperature profile is specified, incorporating 
the seasonal cycle of Sheshadri et al. (2015). An ensemble of 400-day integrations is generated by setting the 
value of the initial_perturbation (a vorticity perturbation that is added to the initial conditions in the Held and 
Suarez (1994) model to initiate baroclinic instability) to linearly step between values of 1.0e−7 and 2.0e−7 to 
generate 20 branch integrations. Further ensembles of three integrations each with altered equator to pole tem-
perature gradients are run. The tropospheric equator to pole temperature gradient in the equilibrium temperature 
specifications [the parameter δy in Equation A4 from Polvani and Kushner  (2002)] is varied between 10 and 
70 K, with the default being 60 K.

2.2. AM4 Integrations

The comprehensive model data in our study were generated using the Geophysical Fluid Dynamics Laboratory 
(GFDL) Atmosphere Model 4.0 (AM4.0; Zhao et al., 2018a, 2018b). AM4.0 was developed at GFDL and used 
as part of Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016). The base run setup 
uses the default input data and parameters as shared by GFDL (https://github.com/NOAA-GFDL/AM4), with 
small perturbations to initial conditions introduced through a namelist variable “add_noise.” The model is run 
with specified sea surface temperature (SST), with seasonally varying insolation and a sea-ice distribution as de-
scribed in Zhao et al. (2018a). In all other setups, we vary SST as either a uniform or zonally symmetric forcing.

AM4.0 uses the GFDL Finite-Volume Cubed-Sphere Dynamical Core (FV3) (Harris & Lin, 2013; Putman & 
Lin, 2007) with 96 × 96 grid boxes per cube face. Each model run was integrated for 100 days, with a horizontal 
grid spacing of approximately 100 km (C96) and 33 levels in the vertical. The model top is at 1 hPa. Horizontal 
winds, temperature, and precipitation were recorded at daily intervals. To reduce computational complexity, the 
processes related to oceans are turned off for all our integrations, keeping the related initial conditions static 
through the run. In all integrations, we introduce 0.0333  K of random thermal noise during initialization to 
seed errors between integrations of the same parameters and initial conditions. Model runs were conducted on 
Sherlock, a High-Performance Computing (HPC) cluster, operated by the Stanford Research Computing Center.

A total of 17 model setups were analyzed, each with a different SST profile. Details of AM4 integrations are 
summarized in Table S1 in Supporting Information S1, and the corresponding SST profiles are shown in Figure 
S1 in Supporting Information S1. The base model setup uses the default prescribed SST profile (Figure S1 in 
Supporting Information S1) and consists of 20 integrations. Eight setups used SST profiles uniformly adjusted in 
increments of 1°C from −4 to +4 °C. The first and last setups in this range consist of 20 integrations each, and 
the six intermediary configurations consist of two integrations each.

Eight setups use Qobs SST profiles defined by Neale and Hoskins (2000). The Qobs SST distribution is zonally 
symmetric, peaking at the equator, and decreasing geometrically to zero at 60N and 60S. In our perturbation 
runs, we scale this Qobs profile by factors that range from −16 to 16 in increments of 4K. The Qobs distributions 
change the equator to pole temperature gradient whereas the uniform adjustments do not. The +4 and −4 °C 
configurations consist of four integrations each, and the ±8, ±12, and ±16 °C configurations consist of three 
integrations each. While forced warming only occurs in the sea surface, temperatures over land increase in step 
with temperatures above the ocean and become smoothly distributed in fewer than 10 days.

3. Error Growth in the Dynamical Core
Figure 1 shows the growth of error in zonal wind and temperature averaged across all longitudes between 850-
500 hPa, which we designate the lower troposphere, and 500-200 hPa, which we designate the upper troposphere, 
at 45°N. We focus here on 45°N, but other choices of midlatitudes in both hemispheres show similar results. Four 

https://github.com/NOAA-GFDL/AM4
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of the integrations are shown for the control run of both model configurations for figure clarity. In both models, as 
the model branch integrations diverge from each other, error grows with time, and ultimately saturates (in agree-
ment with previous studies, e.g., Krishnamurthy, 1993; Liu et al., 2009). Our method to identify saturation times 
is described in Supplement T1. It is evident that error growth in the dynamical core model is much slower than 
that in AM4, with saturation occurring at about 65–70 days as compared to 20–25 days in the AM4 integrations. 
The error in temperature at saturation is similar across the two models, but the saturated error in zonal wind is 
higher in AM4 (about 20 m/s versus 10 m/s in the upper troposphere in the dynamical core).

Since baroclinic instability is the likely facilitator of error growth in the midlatitudes, we calculate Eady growth 
rates (EGR) as an indicator of the time scales involved in the growth of baroclinic disturbances, and therefore 
of error. The EGR values are calculated as � = |
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 , where 𝐴𝐴 𝐴𝐴𝑜𝑜 is the Coriolis parameter, the static stability 
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√
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 , z is altitude, 𝐴𝐴 𝐴𝐴 is potential temperature, and 𝐴𝐴 𝐴𝐴𝐴 is zonal mean 
zonal wind. Table 1 shows EGR calculated for the dynamical core and for AM4 output between 850 and 200 hPa, 
averaged between 42.5°N and 47.5°N. The differences in EGR between the base runs of the dynamical core and 
AM4 stem from differences in their static stability and vertical shear. In the case of AM4, we also estimate a 
moist Eady growth rate based on replacing the dry static stability with the effective static stability calculation of 
O’Gorman (2011), which represents a way of accounting for the effects on moisture on static stability and is a 
small correction to the dry growth rate.

To test the hypothesis that the basic state influences the time scales involved in the growth of errors (and hence 
the inherent predictability of these models), we consider a series of additional dynamical core simulations with 
altered equator to pole temperature gradients; error growth in zonal wind from these integrations is shown in 
Figure 2; error in other variables behaves similarly. Theories by Stone (1978) and Held (1982) relate the static 
stability with meridional temperature gradients, and more recently Frierson et al. (2006) and others have related 
moist stability to surface equivalent potential temperature gradients. In this idealized model, varying the pa-
rameter 𝐴𝐴 𝐴𝐴𝐴𝐴 (see Equation A4 in Polvani and Kushner (2002); the parameter is also referred to as 𝐴𝐴 (Δ𝑇𝑇 )𝑦𝑦 in Held 
and Suarez  (1994)) is a trivial way to systematically alter the equator to pole temperature gradient, and thus 
static stability. As 𝐴𝐴 𝐴𝐴𝐴𝐴 is varied between 10 and 70 K, the static stability and the vertical shear of the midlatitude 

Figure 1. Root mean squared error in (top panel) zonal wind and (bottom panel) temperature for the base state (denoted h0) 
dynamical core integrations in purple and AM4 in orange for the upper and lower troposphere, averaged across longitudes at 
45°N. The time to error saturation is marked with a vertical line.
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atmosphere both increase, and baroclinic eddies grow more quickly (using the Eady growth rate as a measure) the 
time required for error to saturate (and thus, for the model to “forget” initial conditions) monotonically reduces.

4. Error Growth in a Range of AM4 Climates
To consider the question of predictability windows in a range of climates, we turn to the results from the com-
prehensive moist model integrations, which span a wide range of global mean surface temperature. Figure 3 
shows error growth in terms of RMS errors in zonal wind and temperature for a selection of the AM4 integrations 
ranging from the coolest to the warmest climates. A clear trend emerges—the time to error saturation systemati-
cally reduces with warming. Thus, the comprehensive climate model takes longer to lose its “memory” of initial 

Run type Dry EGR (1/days) Moist EGR (1/days) Dry N (1/days) Moist N (1/days)
du/dz 

(1/days)

AM4 (Qobs) −16°C 1.41 1.62 1,171 1,077 166

−12°C 1.41 1.63 1,171 1,074 167

−8°C 1.35 1.56 1,169 1,067 163

−4°C 1.50 1.74 1,171 1,064 179

Base 1.60 1.85 1,179 1,063 198

+4°C 1.73 2.01 1,196 1,064 225

+8°C 1.92 2.24 1,225 1,076 261

+12°C 2.07 2.47 1,237 1,062 285

+16°C 1.94 2.32 1,275 1,079 275

Dycore 10 0.1621 — 1,256 — 7

20 0.3001 — 1,284 — 21

30 0.3888 — 1,310 — 32

40 0.4512 — 1,342 — 40

50 0.4978 — 1,366 — 40

60 0.5626 — 1,404 — 46

70 0.665 — 1,427 — 40

Table 1 
Dry and Moist Eady Growth Rates, and Dry and Effective Stratification, and Vertical Shear at 45°N for the Dynamical 
Core and AM4 Integrations

Figure 2. Root mean squared error in zonal wind across the dynamical core integrations, from δy = 0 in dark blue to δy = 70 in red. The time to error saturation is 
marked with a vertical line with the days to saturation listed next to the run names in the legend.
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conditions in cooler climates than warmer ones, indicating a reduction of predictability with warming. This holds 
across both the climates with uniform warming/cooling at all latitudes and in those that were perturbed with 
respect to the Qobs profile.

The latitudinal structure of EGR for these integrations are shown in Figure 4; these are consistent with the pic-
ture of increased static stability and vertical shear with warming leading to faster growth of eddies, and thus a 
reduction of the time to error saturation. Figure S2 in Supporting Information S1 shows changes in static stability 
as well as effective static stability between the simulations of a substantially cooler versus a substantially warm-
er planet, with SSTs set to Qobs ± 4°C. Figure 3 would suggest that the intrinsic limit on midlatitude weather 
predictability would vary between 17 and 28 days for the warmest and the coldest integration. In addition to the 

Figure 3. Root mean squared error in (top panel) zonal wind and (bottom panel) temperature for the various AM4 integrations, going from the coolest (dark shades of 
blue) to the warmest (dark shades of red) climates averaged across longitudes at 45°N. The time to error saturation is marked with a vertical line and listed in the legend.

Figure 4. Eady growth rates for the same integrations as in Figure 3, averaged across the first 20 days of integration.
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increased dry static stability under warming, the increased moisture content of a warmer atmosphere further 
modulates these effects through latent heat release (Figure S2 in Supporting Information S1 also shows the ratios 
of dry and effective static stability in the p4 and m4 integrations following the calculations of O’Gorman (2011) 
to provide representative numbers for a warm and a cold climate). We also note that additional complexities 
associated with AM4 vis-à-vis the dynamical core (e.g., the effects of sea ice, interactive radiation, higher hori-
zontal resolution, better resolved teleconnections, etc.) may play roles in setting the rate of error growth in this 
comprehensive model.

5. Discussion and Conclusions
Understanding the factors that control inherent limits on atmospheric predictability, both in the current climate 
and those of the past and future, is of fundamental importance. In the midlatitudes, where the growth of error is 
set by baroclinic disturbances, we have shown that the model's basic state plays a key role in setting how quickly 
atmospheric models lose track of initial conditions.

In the comprehensive GCM, we have carried out a series of experiments in both colder and warmer conditions 
than present-day by modifying SSTs. From these we conclude that the time scales up to which predictions of mid-
latitude weather may be reliable decrease with increasing temperature. Figure 5 illustrates this, showing the time 
to error saturation in zonal wind, temperature, and precipitation as temperature changes, relative to conditions 
similar to the present observed atmosphere. We suggest that these changes could be attributed to increased static 
stability and vertical shear in zonal wind with warming, modified by the moisture content of the atmosphere. 
These results imply that under warming (cooling), the inherent predictability of the midlatitude atmosphere will 
reduce (increase). Initial analysis of the limited output that is available from the CMIP6 archive suggests that the 
EGR is indeed expected to increase toward the end of the century under the SSP245 scenario in CESM2-WAC-
CM, but this calculation was performed using only two model levels that were available. There is also some 
suggestion that Arctic Sea ice loss has been associated with an increase in EGR (Simmonds & Li, 2021).

Analyses of predictability may be more complicated in the tropics, which studies such as Mapes et al. (2008) and 
Straus and Paolino (2008) suggest may be predictable for beyond two weeks and even up to a month. However, 
in the tropics, error propagation is presumably set by convection and convectively coupled waves (e.g., Ying 
& Zhang, 2017), making model studies dependent on the choices involved in the convective parameterization. 
Another intriguing avenue for future study is the inherent predictability of the stratosphere in different climates.

Figure 5. Time to error saturation for (green) zonal wind, (yellow) temperature, and (blue) precipitation across the AM4 
simulations. The x axis shows column integrated temperature differences from a base integration (similar to present-day) at 
45°N.
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Data Availability Statement
The Flexible Modeling System may be found at: https://www.gfdl.noaa.gov/fms/ and AM4 is available for down-
load at: https://doi.org/10.5281/zenodo.1199642. SST distributions used to force AM4 are described in the text 
and illustrated in the Supporting Information.
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